Skip to main content
Battery Storage - Stored for firming

Stored for firming

Even when the sun is not shining, and the wind isn’t blowing, renewable energy can still be used, if stored at the time of generation in large scale batteries which absorb and release energy on demand.

Scaling of storage systems is vital to deliver reliable renewable energy networks around the world and is an ever-evolving industry. The falling prices of lithium carbonate (required for battery consumption) is making battery energy storage (BESS) and attractive energy storage solution.

Australia is expected to need 11-14GW of storage capacity by 2030 to support its renewable growth according to modelling by CSIRO (Commonwealth Scientific and Industrial Research Organisation). Another component of storage is the increase of household batteries. At the end of 2023, just 7% of household rooftops were installed with a battery, but there is double digit growth in this figure in 2024.

HOW BATTERIES WORK

A‌ ‌fundamental‌ ‌problem‌ ‌with‌ ‌electricity‌ ‌is‌ ‌that‌ ‌it‌ ‌cannot‌ ‌be‌ ‌captured‌ ‌and‌ ‌stored.‌ ‌Batteries‌ ‌are‌ ‌a‌ ‌way‌ ‌of‌ ‌getting‌ ‌around‌ ‌this‌ ‌problem‌ ‌–‌ ‌they‌ ‌store‌ ‌chemicals‌ ‌that‌ ‌can‌ ‌be‌ ‌converted‌ ‌‌into‌ ‌‌electrical‌ ‌energy as and when needed. ‌

Today,‌ ‌lithium‌ ‌ion‌ ‌batteries‌ ‌are‌ ‌most‌ ‌commonly‌ ‌used‌ ‌for‌ ‌storing‌ ‌electricity.‌ ‌Lithium‌ ‌is‌ ‌the‌ ‌lightest‌ ‌metal,‌ ‌and‌ ‌has‌ ‌the‌ ‌highest‌ ‌electrode‌ ‌potential,‌ ‌which‌ ‌means‌ ‌batteries‌ ‌using‌ ‌lithium‌ ‌generally‌ ‌offer‌ ‌superior‌ ‌energy-to-weight‌ ‌performance.‌ ‌They‌ ‌also‌ ‌tend‌ ‌to‌ ‌be‌ ‌less‌ ‌susceptible‌ ‌to‌ ‌the‌ ‌aforementioned‌ ‌memory‌ ‌effect.‌ ‌Better‌ ‌yet,‌ ‌Australia‌ ‌is‌ ‌the‌ ‌world’s‌ ‌largest‌ ‌exporter‌ ‌of‌ ‌lithium,‌ ‌so‌ ‌the‌ ‌popularity‌ ‌of‌ ‌lithium‌ ‌ion‌ ‌batteries‌ ‌presents‌ ‌clear‌ ‌economic‌ ‌opportunities.‌ ‌ ‌

The‌ ‌virtue‌ ‌of‌ ‌using‌ ‌batteries‌ ‌in‌ ‌conjunction‌ ‌with‌ ‌variable‌ ‌renewable‌ ‌energy‌ ‌generation‌ ‌is‌ ‌that‌ ‌batteries‌ ‌can‌ ‌store‌ ‌energy‌ ‌at‌ ‌times‌ ‌of‌ ‌low‌ ‌demand,‌ ‌and‌ ‌dispatch‌ ‌it‌ ‌at‌ ‌times‌ ‌of‌ ‌high‌ ‌demand.‌ ‌Batteries‌ ‌can‌ ‌also‌ ‌‌ramp‌ ‌up‌ ‌faster‌‌ ‌than‌ ‌fast-start‌ ‌gas‌ ‌generators‌ ‌(which‌ ‌are‌ ‌themselves‌ ‌faster‌ ‌than‌ ‌coal-fired‌ ‌power‌ ‌stations),‌ ‌providing‌ ‌the‌ ‌grid‌ ‌with‌ ‌much-needed‌ ‌flexibility.‌ ‌ ‌

The‌ ‌world’s‌ ‌first‌ ‌grid-scale‌ ‌lithium‌ ‌ion‌ ‌battery‌ ‌was‌ ‌commissioned‌ ‌in‌ ‌California‌ ‌in‌ ‌2012.‌ Stanwell’s Southern Queensland Battery Storage project will be operational by mid 2025, and the Central Queensland Battery Storage System will be operational by mid 2027.

Other kinds of battery technologies are being tested for use by Stanwell, including Iron-Flow batteries.

Batteries‌ ‌alone‌ ‌won’t‌ ‌fill‌ ‌the‌ ‌intermittency‌ ‌gap‌ ‌–‌ ‌but‌ ‌alongside‌ ‌other‌ ‌energy‌ ‌storage‌ ‌technologies‌, like‌ ‌large-scale‌ ‌pumped‌ ‌hydro,‌ ‌they‌ ‌can‌ ‌help‌ ‌to‌ ‌support‌ ‌the‌ ‌increased‌ ‌use‌ ‌of‌ ‌variable‌ ‌renewable‌ ‌energy‌ ‌sources‌ ‌and‌ ‌ensure‌ ‌the‌ ‌continued‌ ‌stability‌ ‌of‌ ‌Queensland‌ ‌and‌ ‌Australia’s‌ ‌electricity‌ ‌supply.‌ ‌ ‌

Inside BESS pic

Flagship projects

  • Stanwell BESS

    The Stanwell battery storage project is essential to support the renewable projects we have planned in central Queensland and is currently the largest committed battery project in Queensland. The project is also part of the transition of the Stanwell Power Station into a Clean Energy Hub by 2035.

    The Stanwell BESS will consist of 324 lithium-ion Tesla XL Megapacks and be capable of storing and discharging 600MW of energy.

    The BESS will be charged during high renewable energy generation, and discharged back to the grid during peak demand, or to maintain grid stability and can charge and discharge electricity several times a day and can respond within fractions of a second. This BESS is due to be operational by mid 2027.

    Tesla Battery Megapacks
  • Tarong BESS

    This battery storage project is essential to support the renewable projects we have planned in Southern Queensland.  The project is also part of the transition of the Tarong Power Station into a Clean Energy Hub by 2035. 

    The Southern BESS comprises of 164 lithium-ion Tesla Megapacks and will be able to store and discharge 300MW of energy.

     The BESS will be charged during high renewable energy generation, and discharged back to the grid during peak demand, or to maintain grid stability.  The BESS can charge and discharge electricity several times a day and can respond within fractions of a second. This project is due to start operations in late 2024.

    Tarong Bess

BATTERY STORAGE INFORMATION HUB